
Current Trends in Software Systems, Computing, and Information Systems

Prof. Dr.-Ing. Christian Märtin

Faculty of Computer Science

University of Applied Sciences Augsburg

Future Trends in Web Development

Simon Heimler, University of Applied Sciences Augsburg

January 17, 2015

Abstract. Where is the web of the future heading? Nobody can predict this for

sure, but nevertheless it might be interesting to observe some trends that loom

ahead. This article will give a brief overview of some possible technological

foundations of the future web: ECMAScript Harmony, Web Components and

the Semantic Web.

After that some roles the web of the future might increasingly play are outlined.

We seem to be heading toward a ubiquitous web, becoming the most wide-

spread and available platform for applications and increasingly services, too.

Keywords: Web, Internet, JavaScript, Web Components, Semantic Web, Ser-

vices, API, Internet of Things

1 Introduction

Writing about the future is a risky, since history can prove the predicting person

wrong very easily. Nevertheless the author is convinced that thinking and speculating

about the future is ever more important in a world that is changing so fast. It requires

some open mindedness about the possibilities where we are going. The future may

surprise us in many ways, but some parts of it can and should be anticipated by atten-

tive people.

It is a myth that the future comes from nowhere. It is always rooted in the past and

learning about the history can help predicting the future. Even in a time where a lot of

technology happens for the first time, they usually have dozens of years of research

and development behind. Tablets, for example, date back as far as to the 50s1.

The Web has an interesting relationship to the future. Since its architecture is de-

centralized, no one has direct control were the web is heading. Users and developers

set the course for the future of the web, for better or worse. Trends nobody originally

anticipated, like rich web applications, emerge and scratch hard on the limits on the

currently available technology.

After a new trend has established itself or shown enough promise, the official de-

velopment and standardization process might pick it up, adding better technological

support and making it a native part of the web technology stack. This may seem like a

slow, sometimes rough process but it is truly “bottom up”, fitting the decentralized

nature of the web.

One of the obvious disadvantages of this is process is, that technical advancement

has to wait for developer and user adoption. Since many people use outdated brows-

ers, the current web is a compromise of what is working for the majority of them.

Because of that the current state of the web always lags years behind the new ideas

and standards.

Chapter 2 will introduce some key technologies that are currently in development

and may build the foundation of the future web. Chapter 3 will focus on roles the

future web may increasingly play. Both will not go deep into technical details but

outline the main ideas and the implications those trends might have.

2 Technological Foundations of the Future Web

2.1 ECMAScript Harmony

Terms and current state

ECMAScript2 may not be a familiar term to many people. This is because it is

more commonly known as “JavaScript” - the programming language of the browser.

The term “Harmony” refers to the two upcoming ECMAScript 6 and ECMAScript 7

standards of the language.

1 Dimond 1957
2 ECMAScript community 2014

ECMAScript 6 is currently in working draft3 state with a feature freeze already in

place. The official publication date is expected to be June 20154.

Of course even after the official publication it will take months to years for the

browsers to implement ES6 completely and many years until the majority of users

have their browser updated to support those features. Until then developers can start

using parts of ES Harmony through transpilers, like Google Traceur5. They allow for

writing more modern JavaScript and compiling it to ES3 or ES5 for outdated brows-

ers. Some features of ES6 can be retrofitted to older browsers through small JavaS-

cript libraries, called shims6. This process is called feature modernization.

Do not break backward compatibility

ES Harmony has its name for a reason. A definite goal of the new standard is to

remain completely backward compatible and introduce no breaking changes. No old

features are removed or “repaired”. Instead ES Harmony adds new features that can

be used in place of the old features. This ensures that old, unmaintained code will

continue to work on modern browsers.

A good example for this is the new let variable declaration7 which uses block-

scope variable declaration instead of function-scope with var. There is a new for …

of loop8 which solves some problems of the current for … in loop and has elegant

support for iterators. In both cases it was decided not to fix the current implementa-

tion but to add a new one to the language.

This choice of keeping deprecated features does even more increase the need of

sub-setting JavaScript9 through defined coding guidelines / style guides, since the old

(potentially dangerous) features are still available.

A better language for complex applications

An important goal is to make JavaScript better at writing big, complex applications

since this is where the web has grown to the last years. JavaScript was never meant to

be used in this scale, but it happened anyway. The most important addition is the new

module system10 which lets developers easily organize their application in a modular

fashion. Right now this has to be done through 3rd party libraries, with competing

(and incompatible) standards, like AMD11 or CommonJS12.

3 Ecma TC39 2014
4 Axel Rauschmayer 2014
5 https://github.com/google/traceur-compiler
6 Example: https://github.com/paulmillr/es6-shim/
7 Ecma TC39 2014, p. 222
8 Ecma TC39 2014, p. 242
9 Crockford 2008
10 Ecma TC39 2014, p. 301
11 http://requirejs.org/docs/whyamd.html
12 http://wiki.commonjs.org/wiki/CommonJS

A better language for code generators

JavaScript is increasingly used as a target language of code generators. Programs

that are written in C++, CoffeScript, Dart, etc. are compiled into machine-optimized

JavaScript. While there are projects that add additional optimizing hints to the code,

like asm.js, this will be increasingly supported by JavaScript natively by features like

Typed Arrays13.

A better language in general

There are a lot of features that make writing JavaScript a more clean and modern

experience. Some patterns that are increasingly used by developers through libraries

like the promise pattern14 will go native. Some new ES6 additions only add “syntactic

sugar”, which means shorter and cleaner ways to write code, without adding a truly

new feature. The new class notation15 is such a feature. It is just a more convenient

(and for many programmers more familiar) way to write object oriented code in Ja-

vaScript.

2.2 Web Components

Current State

Web Components are another technology that is currently in standardization pro-

cess. There are a few W3C specs, most of them in working draft state. One part –

templates – is already included in the final, recommended HTML5 Spec16.

Like ES6 the adoption of the feature depends on the browser and user adoption.

Meanwhile there are shims (a script that add support for modern features in older

browsers) which could speed this up significantly.

Web Components have complete support in Google Chrome and partial in Firefox.

However it’s currently not entirely sure if Safari and IE start to implement it too.

Since Web Components is a rather big extension to the current browsers, those shims

are rather heavy and complex in nature – which has significant size and performance

implications17. That makes the future of Web Components somewhat uncertain, which

is a pity since it is one of the most interesting and promising new approaches to web

development in the opinion of the author.

What problems Web Components solve

As mentioned in the introduction, the web is (increasingly) developed from bottom

up. Web Components empower this approach through giving web-developers the

ability to create their own, custom HTML elements or alter the native ones. This is

13 Ecma TC39 2014, pp. 486ff
14 Ecma TC39 2014, p. 557
15 Ecma TC39 2014, pp. 286ff
16 Ian Hickson et al. 2014
17 TJ VanToll 2014

made possible by allowing web-developers a more low-level access to extend the

browser itself.

Since Web Components work like regular HTML elements, they are easy to use for

non-technical users. They feel like plugins: The user adds a new component to his

website and now he can use additional elements and features, just by adding HTML.

Developing new browser features through Web Components enforces (or at least

encourages) a more modular programming style. Unwanted interdependencies can be

easily avoided. This makes WebComponents easy to reuse.

Example: Responsive images

Responsive images are a good example where Web Components would come in

handy. There is a definite need for responsive images in the browser. The current

image tag does not support conditional loading of images. With the great variety of

display sizes and resolutions that came up the last years, it became an important fea-

ture to support those in a smart way.

The classic “bottom up” way would be to hack around that limitation through li-

braries and wait for the W3C and browser vendors to add native support. In fact, this

is what’s currently happening with the proposed <picture> element18.

With Web Components developers can get a clean solution much faster: They

simply create a new HTML tag, e.g. <x-picture> . This new image element has

support for conditionally loading different resolutions.

It’s likely that a lot of different approaches emerge and after one establishes itself

more broadly the W3C could use it as a basis for developing a completely native ele-

ment. If the element happens to be a rather special use case it won’t and it doesn’t

hurt because the Web Component alternative works just as fine.

In any case, users and developers don’t have to wait for standardization to get ac-

cess to clean, new HTML elements and features.

Custom Elements

Creating custom elements20 is the main feature of Web Components. This approach

has some advantages over the current libraries: It not only blends completely into the

way the browser works natively, the API of the new component is simple HTML.

Behavior or appearance can be altered by adjusting the content and attributes of it.

This makes it very easy to use and re-use, since it is basically just an HTML embed

code.

Shadow DOM.

Native Elements hide their implementation and inner working from both users and

developers. This is done through the Shadow DOM21, which is a separate, inaccessi-

18 https://html.spec.whatwg.org/multipage/embedded-content.html#the-picture-element
19 https://github.com/ResponsiveImagesCG/x-picture
20 Dimitri Glazkov 2013
21 Dimitri Glazkov, Hayato Ito 2014

ble DOM tree just for that element. It contains further HTML elements that are ren-

dered and calculated by the browser.

Web Components essentially open up the Shadow DOM for developers, allowing

them to use it for hiding complexity and preventing unwanted manipulation from

outside, which could mess up the logic or style of the element. That way, different

components can’t incidentally interfere with each other.

HTML Imports

Currently libraries require the web-developer to add new script and CSS-link tags

to their HTML, which adds new requests the browser has to handle. After that some

more HTML is usually required to create the frame the library is working in. With the

new HTML Imports feature22 this can be aggregated into one module import that

consists of HTML with JavaScript and CSS already embedded. This makes including

Web Components even more convenient.

2.3 Semantic Web and Linked Data

Terms and current state

There are two common used Terms that refer to the same ideas and technologies:

Semantic Web is the more official name, while Linked Data has a more pragmatic,

data focused, connotation. From a technical perspective, the Semantic Web consists

of various concepts, technologies and formats, many of them already W3C standard-

ized. This is called the Semantic Web Stack23.

The idea was introduced by Tim-Berners Lee, the inventor of the web. To quote

him, describing the Vision of the Semantic Web:

„The Semantic Web is an extension of the current web in which information is giv-

en well-defined meaning, better enabling computers and people to work in coopera-

tion.“24

To sum it up, the Semantic Web is not a replacement of the current web, but an ex-

tension – an additional layer. That layer defines the actual meaning of the content in a

machine-accessible way. The goal is to lay the groundwork for a better human-

machine cooperation.

While the technology part has seen over a decade of development and standardiza-

tion, the Semantic Web is has yet to become an everyday reality for web users. It is

currently mainly used in academia and government. However, big web companies

like Google, Microsoft and Facebook started to adopt it lately.

One of the problems of the Semantic Web approach is, that it is rather “top-down”,

meaning a rather small group of people decided that this needs to be done in order to

get a better and smarter web. Such top-down approaches can drive the future in a

much faster and more profound way, but they are also prone to fail if they don’t get

the critical mass of adoption.

22 Dimitri Glazkov, Hajime Morrita 2014
23 Tim Berners-Lee 2007 http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)
24 Tim Berners-Lee et al. 2001

Semantic annotation

Machines have a hard time understanding the actual meaning of the content of a web-

site. This is because the web is almost exclusively optimized for humans.

Semantic Annotation is the process of adding additional layer of machine readable

and interpretable information about the content and its meaning (semantics). Those

additional information are stored in Triples. The Semantic Web standardized this

concept of a triple-centric data structure as RDF25. Each triple declares a simple

grammatical sentence, consisting of a subject, predicate and an object. Each is an URI

in nature, which are unique and can also refer to abstract resources and concepts like

real-world things and concepts.

To store those information in a decentralized way, they can be embedded into regu-

lar webpages or provided under their own URI. RDF is only an abstract concept of a

data format, but there are many concrete data serialization formats, supporting

HTML, XML, JSON or plain-text as container format.

The most obvious field of application for this is SEO. Big search-machine compa-

nies like Google, Microsoft, Yandex and Yahoo joined forces to create the sche-

ma.org26 project, a common vocabulary for talking about things in the web. With the

big search machines supporting Semantic Annotations, there is real SEO value in

providing it. This may even be the main driver for the adoption of Semantic Web

Technologies.

Knowledge aggregation and creation

If RDF statements share the same entity (URI) they get linked together and a graph

structure emerges. Graph structures are especially powerful, since they are schema-

less. Merging data and knowledge from different sources is possible without having to

(manually) provide hints how the computer should do it.

The Semantic Web offers many additional technologies for aggregating, storing,

querying and interpreting that data. Ontologies27 allow to declare a vocabulary along

with a schema (concept) of a domain. This allows to do reasoning with the given data,

inferring new knowledge through description logics28.

Sharing the context of the word

Since ontologies can describe specific domains and the model, it makes it an inter-

esting candidate for machine-to-machine communication and APIs/Services. Humans

share a common vocabulary and concept of the world, this is called language and

culture. Computers do not have that, so they have to be very strict (and thus not

smart) about incoming information. If the computer has an ontology it can do its own

reasoning and share the logic about how to interpret the data.

25 Eric Miller, Frank Manola 2004
26 Google Inc. et al.
27 See OWL (Markus Krötzsch et al. 2012) and RDFS (Dan Brickley, Ramanathan Guha 2004)
28 Markus Krötzsch et al. 2014

This can lead to machines first exchanging their ontologies and then the actual da-

ta. Currently most APIs have only human-readable documentation and programmers

have to carefully explain computers how to access and process those APIs. With a

shared ontology computers can learn how to do that on their own. Also this allows for

auto generated code and documentation, further reducing areas of inconsistency. An

interesting Semantic Web approach here is Hydra29.

3 Roles of the Future Web

3.1 Web as a Platform

The Web is advancing as the most important and widespread application platform.

There are several operating systems which are built to be web-first, like FirefoxOS30,

ChromeOS31 or WebOS32. Currently they do not have a big market share, but its in-

creasing33.

Even Operating Systems that have their own native platform are making big efforts

to support the web as a secondary platform. iOS and Android are already there, Mi-

crosoft hopped onto this trend with the release of Windows 834 and Windows Phone.

This trend does not stop at classical computing devices: Smart TVs, Cars and even

fridges start to support the web platform. It is hard to find systems which don’t. The

web seems to establish itself as the ubiquitous platform, making JavaScript the most

universal, cross-platform language.

JavaScript as a Compile Target.

JavaScript is increasingly used as a compile target of different programming lan-

guages. The performance of JavaScript had been dramatically improved in the last

years. Mozilla reached a major breakthrough with asm.js35, which is “an extraordinary

optimizable, low-level subset of JavaScript”36 that supports performance optimization

through source code annotations. There are more projects that aim for making JavaS-

cript a better compile target, including parts of ES Harmony.

Those efforts allow for high performance ports of foreign applications to the web

browser. It is getting more common to write web applications in a language of choice

(like Google Dart37), and compile it to optimized JavaScript afterwards.

29 Lanthaler 2013
30 https://www.mozilla.org/de/firefox/os/
31 http://www.chromium.org/chromium-os
32 http://www.openwebosproject.org/
33 http://www.gartner.com/newsroom/id/2819917
34 http://msdn.microsoft.com/en-us//library/windows/apps/br211385.aspx
35 David Herman et al. 2014
36 http://asmjs.org/
37 https://www.dartlang.org/

An impressive example of a port of already existing native code is Linux running

in the browser38 or the Unreal Engine 4 ported to HTML539.

This trend is establishing JavaScript the default, cross-platform “virtual machine

byte code”. Ironically JavaScript succeeds, where JAVA once failed.

3.2 Web of Applications

The current web is dominated by Content Management Systems (CMS). All the

widespread CMS are based on the traditional, stateless request-response model. They

usually do provide not much abstraction: Either you get the whole site containing all

information or you get nothing. This is very inefficient, since that whole site has to be

calculated, sent and rendered every time the user moves to a new page.

Now that the architectural possibilities have dramatically improved, this can be

done much more efficient and performant for both the server and client.

Single Page Applications (SPA) are much smarter about this, but currently they are

almost exclusively applications. Now that Google has better support for indexing

dynamic, AJAX oriented websites40, the biggest hindrance from switching to a more

modern architecture is gone. Isomorphic JavaScript 41, sharing the same codebase

between client and server, may be a good alternative approach for solving the SEO

problem. The server could always deliver the full page on a direct request, and if the

client supports it, dynamically load and render all future request asynchronally.

Since the advantages of this approach are obvious, it is likely we’ll see some new

type of CMS systems emerge which feel more like applications than traditional web-

sites. They will likely be API / Service centric and have a loosely coupled architec-

ture. The front-end could be multiple, completely separate projects – supporting

browsers, (native) mobile apps and desktop applications. Service / API centric CMSs

can be useful in the context of Internet of Things, since they would have excellent

machine accessibility by default through its API architecture.

If this approach should establish itself, the web experience will be more like that of

application and apps. Users will become accustomed to a uninterrupted, nearly imme-

diate browsing experience.

3.3 Web of Services

The Web of Services42 is a natural trend that comes out of the growing field of ap-

plication of the Web. It acknowledges the fact that the web is not only the traditional

browsing of websites anymore. Behind the curtain a lot of machine-to-machine com-

38 http://bellard.org/jslinux/
39 https://www.unrealengine.com/html5/
40 Google Webmaster Central Blog 2014
41 Spike Brehm 2013
42 http://www.w3.org/standards/webofservices

http://www.w3.org/standards/webofservices

munication happens to make the web a smarter and more interconnected experience.

The growth of (RESTful) APIs over the last years is tremendous43.

Internet of Things.

The Internet of Things is a topic on its own, so this article will focus on how web-

development might play an important part in the IoT and vice versa.

IoT devices are always connected to the internet, building a bridge between the

physical world and the internet. It is important to disambiguate between the terms

internet and web. The former is the low-level infrastructure and platform the later

runs on. There are a lot of new protocols and standards in development that are geared

rather toward IoT and not Web use.

Many of the here mentioned technologies may play an important part in the IoT.

The Semantic Web already has put a lot of research and development into machine-

to-machine communication which is an essential part of making the IoT happen.

Since the web as a platform has become nearly ubiquitous it could become the (hu-

man-facing) platform of the IoT as well. In order that the IoT can benefit from the

collected information and intelligence that is already existing in the web, a Web of

Services becomes even more important.

Since the IoT and the web share the same platform it might be possible that we see

an even greater fusion of both, IoT influencing the web and vice versa. Maybe people

in the future even won’t make a big distinction here anymore.

4 Outlook

We’re heading toward a ubiquitous web44 that escapes the browser window and en-

ters devices and services of all kind. The technological foundations to make this hap-

pen have already been laid or are in the process of doing so. With the ever increasing

importance of the web, the pace of future development is likely to increase. For sure

it’s an exciting time to be a web-developer these days.

43 http://www.programmableweb.com/news/9000-apis-mobile-gets-serious/2013/04/30
44 Andreas Hotho, Gerd Stumme 2010

Publication bibliography

Andreas Hotho; Gerd Stumme (2010): Towards the Ubiquitous Web.

Axel Rauschmayer (2014): The ECMAScript 6 schedule changes. Available online at

http://www.2ality.com/2014/06/es6-schedule.html, updated on 6/6/2014, checked on

11/6/2014.

Crockford, Douglas (2008): The good parts. Working with the shallow grain of Ja-

vaScript. Farnham: O'Reilly.

Dan Brickley; Ramanathan Guha (2004): RDF Vocabulary Description Language 1.0:

RDF Schema. W3C. Available online at http://www.w3.org/TR/2004/REC-rdf-

schema-20040210/, updated on 2004, checked on 10/14/2013.

David Herman; Luke Wagner; Alon Zakai (2014): asm.js. Working Draft — 18 Au-

gust 2014. Available online at http://asmjs.org/spec/latest/, updated on 8/18/2014,

checked on 11/7/2014.

Dimitri Glazkov (2013): Custom Elements. W3C Last Call Working Draft 24 October

2013. Edited by W3C. Available online at http://www.w3.org/TR/2013/WD-custom-

elements-20131024/, updated on 10/24/2013, checked on 11/6/2014.

Dimitri Glazkov; Hajime Morrita (2014): HTML Imports. W3C Working Draft 11

March 2014. Edited by W3C. Available online at http://www.w3.org/TR/2014/WD-

html-imports-20140311/, updated on 3/11/2014, checked on 11/6/2014.

Dimitri Glazkov; Hayato Ito (2014): Shadow DOM. W3C Working Draft 17 June

2014. Edited by W3C. Available online at http://www.w3.org/TR/2014/WD-shadow-

dom-20140617/, updated on 6/17/2014, checked on 11/6/2014.

Dimond, Tom (1957): Devices for reading handwritten characters, pp. 232–237.

Ecma TC39 (2014): ECMAScript Language Specifications, 6th Edition. Draft Octo-

ber 14, 2014.

ECMAScript community (2014): ECMAScript. the language of the web. Available

online at http://www.ecmascript.org/, updated on 10/14/2014, checked on 11/5/2014.

Eric Miller; Frank Manola (2004): RDF Primer. W3C. Available online at

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/, updated on 2004, checked

on 10/14/2013.

Google Inc.; Yahoo Inc.; Microsoft Corporation; Yandex: schema.org. Available

online at http://schema.org/, checked on 24.10.201407.11.2014.

Google Webmaster Central Blog (2014): Understanding web pages better. Available

online at http://googlewebmastercentral.blogspot.de/2014/05/understanding-web-

pages-better.html, updated on 4/23/2014, checked on 11/7/2014.

Ian Hickson; Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle Navara;

Edward O'Connor; Silvia Pfeiffer (2014): HTML5. W3C Recommendation 28 Octo-

ber 2014. Edited by W3C. Available online at http://www.w3.org/TR/html5/, updated

on 10/24/2014, checked on 11/7/2014.

Lanthaler, Markus (2013): Creating 3rd Generation Web APIs with Hydra.

Markus Krötzsch; František Simancík; Ian Horrocks (2014): Description Logics.

Markus Krötzsch; Pascal Hitzler; Bijan Parsia; Peter Patel-Schneider; Sebastian Ru-

dolph (2012): OWL 2 Web Ontology Language Primer (Second Edition). W3C.

Available online at http://www.w3.org/TR/2012/REC-owl2-primer-20121211/, up-

dated on 2012, checked on 10/14/2013.

Spike Brehm (2013): Isomorphic JavaScript: The Future of Web Apps. Available

online at http://nerds.airbnb.com/isomorphic-javascript-future-web-apps/, updated on

11/11/2013, checked on 11/10/2014.

Tim Berners-Lee (2007): Semantic Web, and Other Technologies to Watch. Available

online at http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24), updated

on 3/3/2007, checked on 10/24/2014.

Tim Berners-Lee; James Hendler; Ora Lassila (2001): The semantic web. In Scientific

american 284 (5), pp. 28–37, checked on 10/18/2013.

TJ VanToll (2014): Why Web Components Aren't Ready for Production… Yet -.

Telerik. Available online at http://developer.telerik.com/featured/web-components-

arent-ready-production-yet/, updated on 7/17/2014, checked on 11/11/2014.

